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Abstract—Event matching is a critical component of large-scale TAble MAtch(TAMA), a highly efficient approximate match-
content-based publish/subscribe systems. However, mostigting  ing engine, which realizes this idea. Actually, the idea of
methods suffer from a dramatic performance degradation wha approximate event matchirig not new [27]. Our contribution

th t | . In thi TAMA (TAbI . - . . .
Mitsg)s e;n hsigﬁl)else?f?ciegt Cfn%irt)fﬂésvé% per\?;?tn matchi(ng a?]d is a novel data structure that utilizes the ideahararchical

forwarding engine. We consider range-based attribute contsaints ~ discretization and provides controllable false positives in
that are widely used in real-world applications. TAMA employs event matching.

approximate matching to prov[dg fast event matching against an In this paper, we consider onlyrange constraints
enormous amount of subscriptions. To this end, TAMA uses a (congtraints for short). A range constraint is expressed
hierarchical indexing table to store subscriptions. Evenmatching .

in TAMA becomes the query to this table, which is substantidy 25 2 4-tuple of {attribute_name, lower, upper, type},
faster than traditional methods. In addition, the false postive which is equivalent to the Boolean expression of
rate of matching events in TAMA can be adjusted by tuning {attribute_name € [lower, upper|} or {attribute_name >

the size of thg matching table, which makes TAMA favorable in lower} A {attribute name < upper}. Single-sided
practice. We implement TAMA as a forwarding component in constraints, like{attribute_name, operator,val,type}, are

Siena and conduct extensive experiments with realistic settings . licit] ted t traints by includi
The results demonstrate that TAMA has a significantly faster implicitly - converted 1o range constraints Dy Including a

event matching speed compared to existing methods, and only Maximum or minimum attribute value.

incurs a small fraction of false positives. In order to achieve fast matching, TAMA uses a discrete
Index Terms—Content-based publish/subscribe, approximate data structure to index range constraints, which is similar
event matching, Boolean expression, attribute constraint spirit to MICS [14]. A straightforward indexing method is to

separate the whole attribute space into indexed sub-&alth
attribute constraint can then be composited by multiplehsuc
Content-based publish/subscribe netwai®8Ns) have ex- cells, and is encoded as a collection of the correspondilhg ce
tensive use in systems monitoring [1], Web advertisemedjt [11Ds. It is obvious that the number of cell IDs is linear to the
data query in wireless sensor networks [20] and informatiovidth of the interval of each constraint, which results in a
filtering [28]. A highly-efficientevent matching and forward- prohibitive memory consumption when a low false positive is
ing engine is a critical component of CBNs. Since the sulsequired. In order to overcome this limitation, TAMA empy
scriptions of all clients are broadcasted in the networkkbrs a hierarchical indexingapproach, which helps to achieve a
need to process an enormous amount of subscriptions ircautrollable false positive using a limited amount of meynor
large-scale CBN. It becomes extremely challenging for rek space. The number of cell IDs generated by this process is
to sustain a fast event processing speed under such str@s{éogﬁ), whereo is the required false positive rate. TAMA
To deal with this problem, a lot of matching and forwardingtores a hierarchical associative mapil/D, subI D). This
algorithms are proposed [3], [5], [6], [8], [11], [12], [27R8], structure is obtained for each attribute that appears in the
[29]. However, all these proposals useact matchingwhich system. Ultimately, TAMA builds a three-layer index table.
requires that for each event, exactly all matched subsonigt The matching of events becomes a table lookup and a checking
must be found. In the worst case, all subscriptions mightinegsing the counting algorithm [4], [28].
to be examined, which results in a processing time linear toTAMA has the following properties:
the number of subscriptions. Many techniques are proposed¢ Storage consumption grows @&(|C| x log21), whereC
to accelerate this process by shortcutting the matchingue s is the set of all constraints an@'| is its cardinality. Note
unnecessary computation, as shown in [8], [11]. However, it that this does not mean that TAMA' storageligj, L
is unlikely to break the complexity barrier enforced by the times the raw storage.
nature of the algorithms, which limits the system scalfbili « Controllable false positive: false positive rate reduces b
when the network grows larger. half when usingD(|C|) more memory.
On the other hand, introducing a small amount of error « Matching time of an event grows linearly with the number
in the event matching brings about new algorithms that may of matched constraints.
overcome the complexity barrier. In this paper, we presentThese properties are proven to be able to provide a faster
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event processing speed in large scale systems with acteptab o broker
memory consumption, which is demonstrated in our analysis Qi _
and experiment results. Our contributions in this paperaare subscriber N
follows:

o We present TAMA, an approximate matching and for-
warding engine for large-scale CBNs.

« We analyze TAMASs performance in terms of event
matching speed and memory consumption of the indexing  useeriber
table, and verify them through extensive experiments.

« We implement TAMA's matching algorithm as a for-
warding component ofiena [6] and design a prototype
system.

The rest of the paper is organized as follows: Section #lg. 1. A distributed pub/sub system where TAMA is workingahbrokers.

presents our content matching model and the overview of
TAMA; Section Il presents the design and implementatioponstraints of the subscription. An event is forwarded tigio
of TAMA; Section IV describes the implementation of thehe interface of which at least one subscription is matched b
prototype system; Section V analyzes experiment resulis; The responsibility of the event matching and forwarding
Section VI discusses relevant previous work; Section Véngine is to find such interfaces for any incoming event.
concludes this paper. In Fig. 1, we give an overview of how TAMA works. It
shows a canonical distributed content-based publishésilies
) . ) (pub/sub for short) system. TAMA runs on each broker.
Following the naming convention ofSiena [8], @ (jients cansubscribeand unsubscribetheir subscriptions to
primitive  attribute  constraint or primitive constrainf yaMA. Before a subscription is stored into the matching
is a Boolean expression expressed by a 4-tuple @fye all its constraints are transformed into discretieies
{name, operator, wvalue, typej. The operator can py the discretizationmodule. TAMA employs ahierarchical
be any of {<,<,=#>>}. The value types are giscretizationto index subscriptions (will be discussed in the
{integer, double, string We consider only range eyt section). This indexing structure provides a cortuié
constraint which is a satisfiable conjunction of tWotgise positive rate for event matching with a limited memory
primitive constraints and is expressed as a 4-tuplgnsumption, which will be discussed in Section Ill. An
{name, lower, wupper, type}. The constraint has the g enrs attribute assignments are transformed in a simigr
semantic of{name > lower} A {name < upper}. Range gisq by the discretization module. The resultant indexes ar
constraints are assumed to be in inclusive form and &gy ysed as keys to retrieve matched subscriptions from the

normalized to[0, 1]. All ranges of floating-point numbers arem,ich taple. Finally, the correct interfaces for each incoming
implicitly treated as inclusive intervals. Due to the nat@f o\ ant are returned.

continuous distributions, this will not cause problemsr Fo

integer values, an open interval is transformed to an inaus I1l. THE DESIGN OFTAMA

one by reducing its end points’ values. For example100) In this section, we first describe TAMAS approximate
becomes[2,99]. Single sided constraints are converted intmatching table. We then discuss how to do event matching
a range constraint by including a lower or upper boungking this data structure. Finally, we present severahtipé-
value. For example{temperature, <, 100} becomes tions used in the implementation of TAMA.

{temperature, -273.15, 100}, where 273.15°C is the ) .
lowest temperature (absolute zero temperature) allowed Ain APProximate matching table

the system. An equality constraint is a primitive constrain The basic idea of TAMAs matching table is to organize
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Il. MODEL AND OVERVIEW

with operator =". They are defined only folinteger and (range)_constraints into_ an indexing structure, so thatheat
string values. Equality constraintscannot be converted to constraints can be efficiently retrieved for each event. The
range constraints. counting algorithm [4], [28] is then used to obtain the matth

A subscriptionis a conjunction of multiple range constraintsubscriptions. A straightforward method of indexing a ®ng
and equality constraints. It is also calledilter in the context constraintis to separate the content spacedettsand use the
of content-based routing. Each subscription has a unigliks of the cells intersected with the constraint to représten
sublD. A predicateis a disjunction of multiple subscrip- This method is callediscretization as shown in Fig. 2. Anap
tions. Eachinterfaceis associated with a predicate compose@f cell IDs andsubIDs is then built. This operation results in
of subscriptions that are received from this interface. AQ(W.up) cells and a maximum false positive %—f where
eventmessagé@asattribute assignmenthat specify the values W, W, ,, andW,.; are the widths of the inpfft range, the
of all its defined attributes. An event matches a constraifit o resultant ranges after discretization and the cell, rasmbye
if it has an attribute assignment that satisfies the cométrdh  An obvious problem of this approach is that reducing false

event matches a subscription if its assignments satisfthall positive requires a substantial increase of the storageanem
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Fig. 2. A straightforward indexing method, which resultsirireconcilable
conflict between the memory consumption and the false pesiti level 4

For example, in the fine-grained discretization in the batto &1, 2 Grealt o CrEae 00 2 o e rahaded anes
of F|g 2, 6 cell IDs are Obta|ned, which is twice of that IMhre the already covered cells of the last level.

the coarse-grained case. Generally, to obtain a falseiymsit

that is ¢ times that of the original discretizatio%, times the
original memory is needed. This makes it expensive to aehi

a low false positive rate using this approach.

t\r/1e0rem is proved. Note also that the effective discrdtinat
eIeveI, which is(m — start + 1), determines the false positive

. o . 1
In order to resolve this problem, we propadserarchical of dlscrgt|zat|;)n, ,\l’IVh'Ch '_S fou?d to bf,”*‘*‘“’"“ﬁl' bi ._
discretization Fig. 3 illustrates the idea. First, the entire _We give the illustration of TAMAs matching table in

content space of each attribute is separated multiple timitas _F'g' i Using Algonthm 1r']_ we Cbaln Lnsec?ﬁa SubS(;l’Ipthh
different granularities organized inlevels Specifically, at the MO the approximate matching tableThe difference from
i-th level, the attribute space is separated idtccells, and e Straightforward approach is that an additional layes; d

each cell at the-th level will be separated into two cells atcre?gatlon. Ievgl(,j is included in thﬁ tab,:f' TAMA u;esd an
the (¢+1)-th level. In Fig. 3, a 5-level discretization is appliedfjlttrl ute-wise indexing structure. All attributes are ange

The algorithm is depicted in Algorithm 1, and an illustratio Intl(l) a linear lgab_le. dFO;t ea(;:_h attrlbu_te corr:stramt, abset of
is given in Fig. 3. It first find the level at which at least ondl ceCell IDs are obtained after discretization. These IDs bazom

is contained in the input rang&fes 4—9), which is level 2 in indexes of the 3-layer matching tabfettribute name —

Fig. 3. This level is denoted bstart. The remaining portions (6vel number — cell 1D —  sub ID}. A 3-tuple of
of the input range, represented Hyle f#] and [right, r], are {attribute na_me,level number, cell ID}_ is obtained fqr
then discretized at higher level§ies 10— 18), which is level each constraint. TheubID of the subscription, along with

3in Fig. 3. HereJeft andright are the left and right ends of the tuple of (attribute name, level number, cell ID), are
the range that are produced thus far. At the maximum |evg}serted into the matching table. There is another tabledal
' ir_count_table that stores the number of constraints for each

level 4 in Fig. 3, additional ranges are included to conclud¥ o o . ) ,
the discretization with a false positive. subscnpuop, which is .use_d in the matching algorithm to
Since the resultant ranges contain parts of the contéjrﬁterm'ne if a subscription is matched.
space that are not in the original range, Algorithm 1 causesl) Memory consumptionWe assume that the effective
false positives in event matching. We define taiective discretization level of all constraints is As explained above,
discretization leveto be (m — start+1), which is the number @t most 2 cell IDs need to be stored at each level. Each cell ID
of levels spanned from the starting level through the marimu@ssociates with one subscription ID. We dskyte integers to
level. An important property of Algorithm 1 is that at mosttw fepresent cell and subscription IDs, so each attributetcaing
cells are produced at each level. This directly follows friva Nee€ds at most8 x [) bytes to store the resultant IDs. In
discretization process shown in Fig. 3. Based on this ptgpeeXperiments, we put a maximum of 10 million of constraints
we obtain a theorem about the false positive rate (FPR):
Theorem 1: The FPR of hierarchical discretization is re- _
duced at least by half by using one more level of discretizati fnear fables hash maps

cell IDs

Proof: Since the maximum range width is at least the
width of the starting level}¥*¢" and the falsely included

cell

range is at most twice the width of the cell at the maximum

2x W

. m it i ce
level m: Wz, the false positive is at MOSh=rerr5<

. . . ce (':1761.” )
Assuming uniform separation of the content space at all || ...
levels, the false positive is at mos},#t,lﬂ. When
; 1
(m o start. o 1) .IS Iarge, the, FF_)R becom ‘n‘%;{j“fm*l‘ Fig. 4. The structure of the matching table. The first two tayare linear
Therefore, increasing one level in discretization willi@ment  tables; the last layer is a hash map, which is fast for indesiparse key-value
m by 1, which will reduce the false positive by half. Thepairs.

attributes indexes

(\ discrimination Ievels)




Algorithm 1 Range discretization Algorithm 2 Event matching

1: input: m := mazximum level; [I,r] := input range; 1: input: evente
2: output:map(int, set(int)) ID; 2: output: matchedublIDs 1D
3 start = left = right = 0; 3: matchConsCount := {, }
4: for level :=0:m do 4: min := match_table.minLevel()
5: if there is a set of cells contained by, r] then 5: max := match_table.maz Level()
6: IDllevel].union(c); 6: for all attr € e.attributes() do
7 start = level; 7. for level := min : maz do
8 end if 8: celll D = attr.discretize(level)
9: end for o: for all id € matchlds do
10: left = ID]start].min().left(); 10: + + matchConsCount]id)
11: right = ID|[start].max().right(); 11: end for
12: for level := start +1:m — 1 do 12:  end for
13 if there is a set of cellg contained by[l,left] and 13: end for
[right,r] then 14: for all (id, count) € matchConsCount do
14: ID[level].union(c); 15:  if attr_count table[id] == count then
15: left = ID[level].min().left(); 16: ID.union(id)
16 right = IDl[level].max().right(); 17:  end if
17: end if 18: end for
18: end for
19: Find cellsc that containgl, left] and [right, r]
20: ID[m].union(c) 0-th level and 1 at thel-st level in Fig. 3. Algorithm 2

is then executed to perform the matching. The cell IDs are
used to look up the matching table to obtain a setutfiDs,
in the table and usé = 10; the total memory assumption iswhich have constraints that are satisfied by the assignment.

1.49G bytes in the worst case. This is acceptable considerifice cells are contained by subscriptions recorded in each
the current trend of hardware development. Additionatg t €ntry of the matching table and the assignment is contained
actual consumption in real-world applications is likelytie in cells, the assignment must also be contained by the range
smaller, since it is likely that no cell IDs are produced dgpPresenting the constraints. In other words, the eveisfisat
certain levels for a Constraint, and the same cell IDs auée constraints of the returnadblDs defined on the attribute
produced for multiple constraints. name.

2) Insertion and deletion of subscriptionghe insertion This process is performed on all attributes at all levels of
of a subscription into this table is straightforward: ditize the match_table (lines 6 — 13). The above lookup returns a

each constraint and insert itaibD into the corresponding Set ofsubiDs. The appearance count of eaalblD indicates
entry; update theattr_count table. The deletion follows a the number of satisfied constraints of the subscription. The

similar process: If the SUbSCfiptiOﬂﬁJmD is given, each attr _count_table is then checked: A Subscription is matched

constraint is first discretized, and tkeblD is removed from by the event if its appearance count is equal to the assdciate
all the corresponding table entries. Otherwise, a lookup Yalue in the table l¢nes 14 — 17). Since the discretization
performed at all levels to obtain a number of setsafiDs. €nlarges the contained area of the original subscriptiveret
The intersection of all sets gives thebID of the subscriptions iS Nno false negativein the matching. We formally state the
that has the same discretization results. The raw subseriptcorrectness of the algorithm in the following theorem:

is then checked to determine the exact subscription thatsnee Theorem 2: Algorithm 2 returns the IDs of the subscrip-
to be removed. In the case of multiple identical subscripiiotions that are matched by the input event with a bounded false
are obtained, TAMA only removes the one associated witPsitive.

the interface from which the removed subscription is reseiv Proof: We first prove that all subscriptions that are
This guarantees the correctness of the routing. After akeh matched by the input event are returned by Algorithm 2. An
are doneattr_count_table deletes the record of the removedduivalent argument is that the appearance count of the ID of

subscription as before. a matched subscription will be identical to the correspogdi
_ ) value in theattr_count table. To show this, we first note that
B. Matching algorithm if a subscription has a constraint matched by the event, its

When an event is fed into TAMA, its attribute assignment® will be found. We prove this argument by contradiction.
are first discretized into cells. Suppose an attribute agsgmt Suppose the ID of the matched subscription is not returned,
is in the form of [attribute = wvalue], it is represented by the attribute assignment’s cells do not intersect with amsy af
cells containing it at different levels, which uses the santhe constraints at any level. Therefore, this assignmenbis
cell separations as the discretization of range conssraifdr inside the constraint, which is contradictory to the asstionp
example,temperature = 0.7 (normalized value) is 0 at the The argument is thus proved.
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Since the sublDs of different combinations of performance. We proposgynamic matchingo exploit this
attribute name, level number andcell I D are returned, we property in Section IlI-E.
need to prove, that at different levels, the retursebiDs of 3) Complexity: TAMAs match algorithm has a appealing
any attribute assignment of the input event are non-duglita complexity. It works in two phaseguerying phasandupdat-
Assume without loss of generality that there are two difiéreing phase In the querying phaséipes 7 — 14), all partially-
levels (Lo < L) at which the event’s cell ID€,, and(C;, matched subscriptions are returned. The truly-matched sub
return the sameubID 4, then these two cells are producedcriptions are found in the updating phas@iés 15— 17). In
from subscriptioni’s discretization process. According tothe querying phase, all attributes and discretizationl¢esee
the hierarchical separatiod;;,, must be contained by’;,. checked to obtain subscriptions’ IDs. Usihgsh magresults
However, the discretization process does not allow suchirea constant time complexity in retrieval (assuming a perfe
situation, since if a cell is chosen at levie}, all its contained hash function is available). The overall time complexityl wi
cells at higher levels will not be chosen. This makes tHee O(N4NL), whereN4 is the number of the attributes of the
assumption invalid, so the argument is proved. Combinirgyent andN;, is the number of levels that have been checked
these two arguments, we prove that all matched subscritiom match_table.
sublDs are returned by Algorithm 2. In the updating phase, the algorithm updates the number

The bounded false positive follows directly from the analef matched constraints for all partially-matched subsioiys.
ysis in the proof of Theorem 1. Consider a subscriptiohhis operation has a time complexity linear to the number of
comprising of N, attribute constraints, for each attributepartially-matched subscriptions, which is at most the nemb
A; € {Ag, Ay, ..., An, }, its false positive rate is;. Since the of matched constraint9(Nc...). Therefore, the overall time
subscription is a conjunction of constraints, the FPR of- supomplexity of this matching algorithm i©(NaNr + Neons)-
scription matching ist — [T,cro v, (1= 00) & Yo na oic FOT algorithms based on the counting algorithm [4], [28F th
We usually choose a fixed #or al]l attributes, so it becomesupdating phase is inescapable. TAMA achieves a fast magchin
(N4 x o), which is clearly bounded. m speed due to its fast querying phase.

A theorem similar to Theorem 1 is given below, which
describes the trade-off between memory consumption and fHgorithm 3 Optimal separation

matching FPR: 1: input: m := mazimum level; cells[0] = {[0, 1]};
Theorem 3: The matching FPR of Algorithm 2 is reduced?: output:cells := cell separations for level throughm;
by at least half by increasing one level of discretization. 3: for level := 1:m do
Proof: As stated in Theorem 1, the matching FPR for4:  for all cell € cells[level —1] do
each attribute reduces by half when increasing one level median := median(cellpegin, cellend);
of discretization. According to the analysis in the proof of6: separatecell into:
Theorem 2, the FPR of matching J§, o;, which is the sum {lcellyegin, median], [median, cellepg) };
of all FPRs of all attributes. If the FPR of all attributes can7: Insert these two cells inteells[levell;
be reduced by half, the overall matching FPR can be reduceti  end for
by half as well. The theorem is thus proved. m 9 end for

1) Handling equality constraintsThe value of an equality

_constramt, alqng with the ID of the sqbscrlptlon that camsa C. Optimal discretization under non-uniform distribut®of
it, are stored into a hash map. Algorithm 2 needs to look Wient attribute values

this map and thenatch_table to find the correctublDs before _ . N ,
applying the counting algorithm before line 14. Note thatréh The above analysis assumes uniform distribution of events

is no false positive for the matching of equality constraint attribute values, so uniform separation is used at all &oél
2) The false positive of interface matchingince each the hierarchical discretization. It is obvious that thidl wiork

interface is associated with multiple filters, the probiapibf poorly for skewed distributions of attribute values, whiste

an interface is falsely matched by an event is much smallré?rmaI for real-world application [4]. Therefore, non-tarm

if multiple subscriptions are matched. This can be verifisd geparation Is need_ed. Given a latent d|str_|bu_t|on_ of th‘*e’?"
follows: suppose an interfadge f is associated with multiple of an attribute, which is de;scnbe_d by 2 dlstr|b.ut|on fuanti .
filters, of which filter; has a FPR offpr;. If a set of filters D(z), we propose an optimal binary separation process in
filtermaichea @re matched by an event, the probability th(,ﬁlgorlthm 3.

this interface is falsely matched is the probability thafiliers th First, (;A.’e ne(fedtrz:\ h(ejl_ptergu?ctlo?edz‘?n(x, y),t\t/1vh|c_:htg|ve|s f
are falsely matched, which is described as follows: € mecian of e distriution Tunction on the imerval o

[z, 9], which is defined asnedian(z,y) = D~} (2@ P
FPR — H Fors Q) Using t_his method, TAMA can _gue_lrantee Theore_m 3 under
non-uniform event content distribution, as determined hmy t
distribution functionD(x). This can be proved as follows:
Since the filters’ FPRs are generally very small, the int&rfaAccording to the definition ofnedian() function, the expected
FPR can be greatly reduced, which results in desirablerrgutinumber of events that fall into all cells at a given level is th

1€ filtersmatched



/\\ associative map of attribute names and indexes, whichlisccal
0

height b 0 1 11 0 attr _idx_table. Given an attributewame, attr _idx_table[name]

distance / 2 ; ;',/%j returns the index of the attribute’s entries in tihetch_table.

temperatur 3 2} . g . . . .
j AG T = SA L TR L] j P When a subscription is first received at a broker, the atiibu

names of its constraints are substituted by the correspgndi
indexes to save processing time for operations on otheebsok
(in a distributed pub/sub network) and later maintenante. T
fsame operation is performed for an event when it is first

equal probability at thei + 1)-th level, the expected numberr€ceived by a broker. Th_e discretization_levels © thro_ugh
of events that fall into these two cells are half of that at tHgaximum level) ian l?TDd'reg]Ly used as mdedxgs. Thi fmhal
i-th level. Following the logic of the analysis in Section-Al assomatlvr? map of cell 1DS a biDs are stored into a has
we find that the expected number of falsely matched evefi@p as shown in Fig. 4.

is reduced by half with one more level of discretizationsthih I2)f (fompa_\ct el?cokdigg of (_jisc_retizatior: refsulth;:ibs very
also applies to the false positive. Therefore, this proves t elpful to piggyback discretization results for subscops

using the separations produced by Algorithm 3 guarante%'%d events in order to reduce processing time, especially

Theorem 3 for arbitrary attribute value distributions. 8lthat when using non-uniform separation. In the case where memory

the separation can be calculated on-the-fly without conls'.gmiOr bandwidth is I|m|'Fed, this naive optimization may.not
extra memory. be acceptable. We introduce a compact representation of

discretization results of subscriptions based on the wniqu
D. Example property of the discretization process. We use a bit-vector

A simple example of event matching is described here. i@ encode an attribute constraint. The first 6 bits are used to
first insert the fo”owing two Subscriptions into the matw“ encode the index of the first level in discretization. SuﬁpOS
table with maximum level of 4: the number of the first 6 bits i, there are at most two

1) {temperature, 10,70} A {distance, 100,600} cell IDS’_ .and e_a(.:h can be gnc_oded using at nibgits. The
2) {temperature, 0,5} A {height, 5,100} next trailing bit is used to indicate the number of cell IDs:

The first step to insert subscriptions is to normalize tr;g” for 1 and *1” for 2. We further use2(L — 1) bits to
attribute constraints. To simplify the description, we e encode the cell ID produced at two sides of the original range

| f h attribut follows: where (L — 1) is the total number of levels used. Finally, a
value range of each attribute as 1oflows. byte is appended before the vector to record the length of

Fig. 5. The matching table of the example in Section IlI-D.

same. Since a cell at thieh level is separated into two cells o

e temperature : [0,100] the bit-vector. The overall memory consumption is at most:

. dzs.tance:[(),l()()()] 2+2x4+w:10+%_

o height : 0,100] The decoding works as follows: suppose that the IDs of the
Using uniform discretization, the subscriptions become:  |eft and right end cells at level arel andr, respectively; if

1) {temperature,0.1,0.7} A {distance,0.1,0.6} new cells are produced at leviel- 1, their IDs are2l — 1 and

2) {temperature,0,0.05} A {height,0.05,1} 2(r + 1) at the left and right sides, respectively. This can be

The resultant matching table is shown in Fig. 5. Given $een from Fig. 3. The compact representation helps TAMA to
event with assignmentStemperature = 40} A {distance = reduce pre-processing time for subscriptions and events.
200} A {height = 70}, which becomes{temperature = For an event’s attribute assignments, the encoding is as

0.4} A{distance = 0.2} AN{height = 0.7} after normalization. follows: the first byte encodes the first level, and the next 4
The discretized event i§temperature € {0,0,1,3,6}} A bytes record the cell ID of the first level. Theh— 1 trailing
{distance € {0,0,0,1,3}} A {height € {0,1,2,5,11}}, bits are used to encode the following cell IDs. Note that the
which gives the IDs of the cells on level 0 through 4. Theell produced at the-th level must be contained in the cell
retrieved subscription IDs arél, 1,2}. Since subscription 1 of the (i — 1)-th level. We use “0” to indicate that the cell at
appears twice, which is equal to its constraint count, it f§e currentlevel is the first sub-cell of the cell at the poensi
matched by this event. Because subscription 2 appears on@¥el, and “1” for the second sub-cell. A byte that records th
it is not matched. After manual checking, we find that thilength of the bit-vector is then appended at the beginnirgy. A

result of Algorithm 2 is correct. shown in Fig. 3, if the ID of an attribute assignment’s cell at
o level i is n, the ID of the first sub-cell at level + 1) is 2n
E. Optimizations and the second i62n + 1). This rule is used to decode the
We present several techniques used to further improve thievector to get the discretized event attribute assignme
performance of TAMA. 3) Dynamic matching:Eq. 1 gives a natural optimization

1) Matching table organizationThe implementation of the in distributed content-based networks. We call those bsoke
matching table aims to reduce memory access time, whidhectly connected with clientedge brokersand those only
determines the lookup speed. The first two levels of the taldennected with other brokersore brokers Edge brokers
are implemented as linear tables. In order to convert tlegstr need to store a larger matching table with more levels to
of attribute names into integer indexes, we maintain a dlohareserve a low FPR and reduce the wrong events received



by end clients. Core brokers, on the other hand, could store
a smaller table with fewer levels, as long as the event can
match multiple filters for each interface. Another type of
dynamic matching is to deliberately ignore a certain number
of higher levels of the matching table when at least one of the
subscriptions associated with the interface is matchetceSi
false positives only occur at the maximum level, there wdll b
no false positives in this case. This corresponds to theltor
techniques used iBiena[8].

IV. PROTOTYPE IMPLEMENTATION

We implement TAMA as a forwarding component in
Siena [6], [8]. Our implementation includes 3,141 lines of

C++ [24] code which implements two interfacéisdnfig() and  Fig- 6.
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independent ofiena’s framework. It contains two programs100 attribute assignments.

running at brokers and clients. The broker side program has
a receive(addr) function that is continuously listening on a
local network interface specified addr. The received UDP
packet contains the source address that will be associated
with the contained subscriptions in the packet as its outgoi
interface. The subscriptions contained in the packets ate p
into the matching table usingsert(sub, addr) function. addr

is the associated outgoing interface afb. On the client
side, asubscribe(sub, addr)function registers the subscription
sub to the broker residing at the network address indicated
by addr. An accompanyinginsubscribe(sub, addr)removes a
subscription from the broker located addr. Clients publish
events usingotify(event, addr), whereaddr is the address of

its associated broker. All network addresses are stanéa |

ig. 7.

and event storage are defined.

V. PERFORMANCE EVALUATION
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. . Interface matching time per message. Each subiseripais 10 range
addresses and port numbers. The bmary IayOUt of SUb$1mpt£onstraints with a width of 0.01 and 0.5; 20,000 subscniygicor 4,000,000

primitive constraints, are stored in the matching table.

consumption. All experiments are conducted on a Linux

This section presents the evaluation results. We summarge. «iation with 8 3GHz cores and 16GB memory. Parallelism

the results of message matching time, false positives afteves ot seq. All attribute values are normalized[dol]. The
and interface matching, processing efficiency and memop%rameters used are summarized in Table 1.

TABLE |

THE PARAMETERS USED IN EXPERIMENTS

A. Matching time

parameter . ) ) . )
name meaning value range Fig. 6 presents the matching time per message in the
attr_width | width of each range constraints [0.01 — 0.1] degenerate situation where each subscription is assdeiatie
Nattr total number of aftributes | 1,000 a unique interface. Uniform distribution is used. The resul

s number of range constraints N -
Nattr per subscription [1 —10] of Pareto and power law distributions are similar, and are
Ne number of attribute assign (100 — 1, 000] omitted to save space. We |8tena perform 10 rounds of

attr ments per event ’ preprocessing. The-axis represents the number of primitive

total number of primitive con- 7 : : .

Neons Straints [20,000 — 2 x 107] constraints stored in the matching table. Note that eacheran
N total number of interface pe 10— 2 x 107] constraint is counted as two primitive constraints. Thaxis

nf broker _ represents the average matching time per-message inbg-sc
Nous }r?t?}ie”r‘:]rggﬁrmgftzgltfc”pt'ons 1,000 — 106] In this experiment, the IDs of all matched subscriptions of
it number of associated subscrif- [1— 2 x 107] every input event are returned.

sub tions per interface As shown in the figure, TAMA outperformSiena with a
Nonsg tota’ number of messages sehtr;, ggo — 10%] large gap when the number of constraints exceeds 160k. A de-
7 distribution function of the at-| {uniform, pareto, tailed profiling r_eveals that the querying phase of Algorit@ _

i tribute values of events power law} becomes a major bottleneck when the number of constraints

is small, where TAMA only has a slightly smaller matching
time compared t&'iena. This phase almost spends a constant



False positive rate

False positive rate

‘i ", Width of range constraints “

Number of attributes per subscription Number of attributes per subscription =<

Fig. 8. 3D plot of the FPR of subscription matching. 20,000ssuiptions are Fig. 9. 3D plot of the FPR of interface matching. The settiaghie same
stored in the matching table. The number of range constragieit subscription as the experiment of Fig 8.
varies from 1 to 10. The width of range constraints variesnf@01 to 0.1.

. h icall it usi tect hashi e the increasing number of attribute constraints per supton,
time (theoretically constant if using perfect hashing) w the FPR increases. When the amount of constraints per sub-

large number of constraints are stored in the table. The Slg‘e’ription exceeds a certain threshold, the probability #ra

gro;/vthh gf thbe m_a'i(_:hlng (;Imteh IS :ESUILe;ﬂ from more_partll?llgvem can match any subscriptions becomes extremely small,
matched subscriptions. ©n the other thna scanning a so that no subscriptions are matched at all. In this case, the

subscr!pt!ons (with shortcutg to ayoid checkin.g a frachixﬁn FPR is 0. In real applications, we seldom have more than 4 or
SUbS.C“ptIO.nS) Wou!d result in a linearly growing time COMg o 4ributes. The FPRs in Fig. 8 are always befow10~* or
plexity, which certainly would produce substantially deged ?.05%, and according to the analysis in Section III-B, th&FP

results when the numbe.r (,)f con_strgints continges to grow. g} subscriptions that have 10 constraints is 0.5% in thestvor
the te>_<treme case of %ﬂllw"t rrJ1r_|m|t[[\(e confs;ra;gts, _EAMA ase, which should be acceptable for real world application
suhs_ ?]'n.s fa per-mgss?g; matching ime ot 3.25 mifisecon %i’ditionally, since TAMA's approximate matching table pre
W\;\(/:h IS far ﬁpﬁje”}f_i[ ena. iated with h interf serves the proximity in content space, the falsely deliyere
en mulliple TIers are associated with each InteMackyqnis are considered very close to the required contents.

shortcuttingcan significantly reduces the matching time, a$his property makes it more favorable than the approximate

indicated in [8]. A similar experiment is conducted heregl anmatching approach used in [17], where an event may match

tr}esrestglts ;';lllreEsthowrém Fltgh' 7 TA'\SA us]:els dxnamlc dr.nat(t:h'%%bscriptions that are completely irrelevant to its conten
ot Section Hi-E 10 reduce the numuer ol IeVelS Needing 10 be . present the interface matching FPR in Fig. 9. It is mea-

matched. We note that shortcutting only works noticeabfy f%ured in a similar way to Eq. 2. The difference is that we count

the case th".ﬂ constraint width '5.0'5‘ This is because wh & number of selected interfaces instead of subscriptidies
constraint width is small, and an input event can only MalGled108 events to TAMA with 20,000 subscriptions, and 2,000

? Ve%’ tsmall nu_mbelrl of stulro]szrlptlgns,. -I;AMA aﬁtﬁna are h.subscriptions are associated with each interface. The BPR i
orced to examine all matched subscriptions, so the majc Much smaller than that of subscription matching, which is

time al_m(_)st does not change. But, for Wlder_constra|_nts,em elow?2 x 10 in all cases and is generally negligible.
subscriptions are matched by the event, which provides more
shortcutting to let both algorithms stop matching withoyt Subscription processing time

returning all matched subscriptions. , L L
We list the subscription insertion time for 3 methods:

B. False positive . Direct insertion Each subscription is discretized before
Fig. 8 plots the FPR of subscription matching versus the insertion;
number of attribute constraints per subscription and ttdttwi  + Fully cached The discretization results are cached with
of each constraint. The FPR is calculated as follows: each subscription and no discretization is needed,;
« Coding An encoded bit-vector is piggybacked with each
@) subscription, and a decoding is needed before insertion.

matched_sub_count Fig. 10 shows the simulation results. We only present

We input 10,000 events to TAMA and calculate the overahe results of using power law distribution in the optimal
FPR using Eg. 2. The results are presented in Fig. 8.2Fhediscretization. The power law distribution has a scalingda
axis represents the number of attributes per subscriptien; of 1.0 and an exponent of. The reason to omit the results
y-axis represents the width of each range constraint; and tifeusing Pareto distribution is that it gives an almost idwait
z-axis is the average matching FPR. 20,000 subscriptions agsults as that of the power law distribution. Using uniform
stored in TAMAs matching table. All subscriptions are disdistribution produces results that are close to those diulhe
cretized up to level 20. This means that wider range coméfraicached and direct-insertion, and using compact coding edeth
will have smaller FPRs since their effective discretizatiodoes not provide noticeable improvement over direct-iicser
levels are larger, which is confirmed in the figure. Also, witince its computation is quite simple.

matched_sub_count — truly_matched_sub_count
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Fig. 10.  The insertion time of different amounts of subgwips that Fig. 12. The memory consumption counted in the memory spaedet to
are expressed as the number of primitive constraints. Eabkcsption is store the cell IDs andublDs in the matching table.
composed of 10 range constraints. The width of each rangstredmt is 0.01.

The effective discretization level is 14.
VI. RELATED WORK

Content-based matching and forwarding are active research
topics [7], [10], [28]. Except for content dissemination, i
has extensive applications in web content caching [4], XML
document filtering [9] and online advertisement [12].

160 T T T T T T T T
150 —0— Uniform with ID

140 —&— Uniform without ID
130 —4— Powerlaw with ID
120 —A— Powerlaw without ID
110 —v— Pareto with ID
—w— Pareto without ID

A. Content representation model

The canonical model uses Boolean expressions of conjunc-
tive normal forms (CNF) to express subscriptions. This nhode
is widely used in [2], [6], [8], [11], [29]. It has the advaigtes
of uniform interfaces and the standard programming model,
T R T which makes it easy to implement. Besides, since it has

Number of subscriptions a well-defined structure, many optimizations can be applied
to achieve very fast event matching and forwarding speed.
However, the problem of exponentially-increasing memory
consumption of converting arbitrary Boolean expressi@23, [
[28] becomes severe and hinders the event processing tioug

As shown in Fig. 10, the labelsoding, fully cached put. The use of arbitrary Boolean expressions draws atienti
anddirect correspond to the three methods given above. Vife [3], [5], [12]. Their works demonstrate that evaluating
can see that the coding method achieves similar resultsaiditrary Boolean expressions can be made efficient, wisich i
the fully-cached method, which is the best. Both coding arbmparable to the canonical model, but has smaller memory
fully-cached reduce nearly half of the insertion time ofedir consumption. However, it is unlikely to sustain a similar
insertion. Fig. 11 shows the time used to delete a subsmniptiperformance in large scale systems of tens of millions of
from the matching table. Deletion is not providedSfiena, constraints, as we have done in this paper. Further, itsssiee
S0 no results is given in the figure. processing overhead is not well addressed in a dynamic
environment.

Deletion time (second)
8

Fig. 11. The deletion time of different amounts of subs@im. The setting
is the same as the insertion test.

D. Memory consumption B. Matching and routing algorithms
We mainly focus on the matching and routing using the

We plot the memory consumption of TAMA in Fig. 12.canonical model. It is proved in [19] that content matching
The raw storage of each range constraint is 16 bytes, whishas hard as partial matching [16§iena fast forwarding
corresponds to 2ouble floating-point numbers in our ma- (SFF) extends the counting algorithm [4], [28] to the shafrtc
chine. TAMAsS memory consumption is measured by theatching process for the disjunction of multiple subsaipsg
space needed to store all cell and subscription IDs in thesociated with a single network interface. The main prable
matching table. In our implementation, cell and subsaipti of SFF is that it requires complex operations to update the
IDs are 4-byte integers. As shown in the figure, the memomyatching table. And as indicated in this paper, its perfarcea
consumption grows linearly with the number of constraintslegrades substantially as the scale of the system grows. An
TAMA consumes 3-4 times memory of the raw storage. Thextension to SFF is presented in [25], which aims to improve
is less than the worst case analytic results in Section lll-#he storage and management of subscriptions. MICS [14]
Note that the effective discretization level numbers areadd intends to transform multi-dimensional ranges, which are
17 for the widths of 0.01 and 0.1, respectively. used to express subscriptions into one-dimensional iakgrv
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