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Abstract—Event matching is a critical component of large-scale
content-based publish/subscribe systems. However, most existing
methods suffer from a dramatic performance degradation when
the system scales up. In this paper, we presentTAMA (TAble
MAtch), a highly efficient content-based event matching and
forwarding engine. We consider range-based attribute constraints
that are widely used in real-world applications. TAMA employs
approximate matching to provide fast event matching against an
enormous amount of subscriptions. To this end, TAMA uses a
hierarchical indexing table to store subscriptions. Eventmatching
in TAMA becomes the query to this table, which is substantially
faster than traditional methods. In addition, the false positive
rate of matching events in TAMA can be adjusted by tuning
the size of the matching table, which makes TAMA favorable in
practice. We implement TAMA as a forwarding component in
Siena and conduct extensive experiments with realistic settings.
The results demonstrate that TAMA has a significantly faster
event matching speed compared to existing methods, and only
incurs a small fraction of false positives.

Index Terms—Content-based publish/subscribe, approximate
event matching, Boolean expression, attribute constraint.

I. I NTRODUCTION

Content-based publish/subscribe networks(CBNs) have ex-
tensive use in systems monitoring [1], Web advertisement [12],
data query in wireless sensor networks [20] and information
filtering [28]. A highly-efficientevent matching and forward-
ing engine is a critical component of CBNs. Since the sub-
scriptions of all clients are broadcasted in the network, brokers
need to process an enormous amount of subscriptions in a
large-scale CBN. It becomes extremely challenging for brokers
to sustain a fast event processing speed under such stress.
To deal with this problem, a lot of matching and forwarding
algorithms are proposed [3], [5], [6], [8], [11], [12], [27], [28],
[29]. However, all these proposals useexact matching, which
requires that for each event, exactly all matched subscriptions
must be found. In the worst case, all subscriptions might need
to be examined, which results in a processing time linear to
the number of subscriptions. Many techniques are proposed
to accelerate this process by shortcutting the matching to save
unnecessary computation, as shown in [8], [11]. However, it
is unlikely to break the complexity barrier enforced by the
nature of the algorithms, which limits the system scalability
when the network grows larger.

On the other hand, introducing a small amount of error
in the event matching brings about new algorithms that may
overcome the complexity barrier. In this paper, we present

TAble MAtch(TAMA), a highly efficient approximate match-
ing engine, which realizes this idea. Actually, the idea of
approximate event matchingis not new [27]. Our contribution
is a novel data structure that utilizes the idea ofhierarchical
discretization, and provides controllable false positives in
event matching.

In this paper, we consider onlyrange constraints
(constraints for short). A range constraint is expressed
as a 4-tuple of {attribute name, lower, upper, type},
which is equivalent to the Boolean expression of
{attribute name ∈ [lower, upper]} or {attribute name ≥
lower} ∧ {attribute name ≤ upper}. Single-sided
constraints, like{attribute name, operator, val, type}, are
implicitly converted to range constraints by including a
maximum or minimum attribute value.

In order to achieve fast matching, TAMA uses a discrete
data structure to index range constraints, which is similarin
spirit to MICS [14]. A straightforward indexing method is to
separate the whole attribute space into indexed sub-cells.Each
attribute constraint can then be composited by multiple such
cells, and is encoded as a collection of the corresponding cell
IDs. It is obvious that the number of cell IDs is linear to the
width of the interval of each constraint, which results in a
prohibitive memory consumption when a low false positive is
required. In order to overcome this limitation, TAMA employs
a hierarchical indexingapproach, which helps to achieve a
controllable false positive using a limited amount of memory
space. The number of cell IDs generated by this process is
O(log2

1
�
), where� is the required false positive rate. TAMA

stores a hierarchical associative map⟨cellID, subID⟩. This
structure is obtained for each attribute that appears in the
system. Ultimately, TAMA builds a three-layer index table.
The matching of events becomes a table lookup and a checking
using the counting algorithm [4], [28].

TAMA has the following properties:
∙ Storage consumption grows inO(∣C∣ × log2

1
�
), whereC

is the set of all constraints and∣C∣ is its cardinality. Note
that this does not mean that TAMA’s storage islog2 1

�

times the raw storage.
∙ Controllable false positive: false positive rate reduces by

half when usingO(∣C∣) more memory.
∙ Matching time of an event grows linearly with the number

of matched constraints.
These properties are proven to be able to provide a faster



event processing speed in large scale systems with acceptable
memory consumption, which is demonstrated in our analysis
and experiment results. Our contributions in this paper areas
follows:

∙ We present TAMA, an approximate matching and for-
warding engine for large-scale CBNs.

∙ We analyze TAMA’s performance in terms of event
matching speed and memory consumption of the indexing
table, and verify them through extensive experiments.

∙ We implement TAMA’s matching algorithm as a for-
warding component ofSiena [6] and design a prototype
system.

The rest of the paper is organized as follows: Section II
presents our content matching model and the overview of
TAMA; Section III presents the design and implementation
of TAMA; Section IV describes the implementation of the
prototype system; Section V analyzes experiment results;
Section VI discusses relevant previous work; Section VII
concludes this paper.

II. M ODEL AND OVERVIEW

Following the naming convention ofSiena [8], a
primitive attribute constraint, or primitive constraint,
is a Boolean expression expressed by a 4-tuple of
{name, operator, value, type}. The operator can
be any of {<,≤,=, ∕=,≥, >}. The value types are
{integer, double, string}. We consider only range
constraint, which is a satisfiable conjunction of two
primitive constraints and is expressed as a 4-tuple
{name, lower, upper, type}. The constraint has the
semantic of{name ≥ lower} ∧ {name ≤ upper}. Range
constraints are assumed to be in inclusive form and are
normalized to[0, 1]. All ranges of floating-point numbers are
implicitly treated as inclusive intervals. Due to the nature of
continuous distributions, this will not cause problems. For
integer values, an open interval is transformed to an inclusive
one by reducing its end points’ values. For example,(1, 100)
becomes[2, 99]. Single sided constraints are converted into
a range constraint by including a lower or upper bound
value. For example,{temperature, <, 100} becomes
{temperature, -273.15, 100}, where -273.15∘C is the
lowest temperature (absolute zero temperature) allowed in
the system. An equality constraint is a primitive constraint
with operator “=”. They are defined only forinteger and
string values.Equality constraintscannot be converted to
range constraints.

A subscriptionis a conjunction of multiple range constraints
and equality constraints. It is also called afilter in the context
of content-based routing. Each subscription has a unique
subID. A predicate is a disjunction of multiple subscrip-
tions. Eachinterfaceis associated with a predicate composed
of subscriptions that are received from this interface. An
event/messagehasattribute assignmentsthat specify the values
of all its defined attributes. An event matches a constraint only
if it has an attribute assignment that satisfies the constraint. An
event matches a subscription if its assignments satisfy allthe
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Fig. 1. A distributed pub/sub system where TAMA is working onall brokers.

constraints of the subscription. An event is forwarded through
the interface of which at least one subscription is matched by
it. The responsibility of the event matching and forwarding
engine is to find such interfaces for any incoming event.

In Fig. 1, we give an overview of how TAMA works. It
shows a canonical distributed content-based publish/subscribe
(pub/sub for short) system. TAMA runs on each broker.
Clients cansubscribeand unsubscribetheir subscriptions to
TAMA. Before a subscription is stored into the matching
table, all its constraints are transformed into discrete indexes
by the discretizationmodule. TAMA employs ahierarchical
discretizationto index subscriptions (will be discussed in the
next section). This indexing structure provides a controllable
false positive rate for event matching with a limited memory
consumption, which will be discussed in Section III. An
event’s attribute assignments are transformed in a similarway
also by the discretization module. The resultant indexes are
then used as keys to retrieve matched subscriptions from the
match table. Finally, the correct interfaces for each incoming
event are returned.

III. T HE DESIGN OFTAMA

In this section, we first describe TAMA’s approximate
matching table. We then discuss how to do event matching
using this data structure. Finally, we present several optimiza-
tions used in the implementation of TAMA.

A. Approximate matching table

The basic idea of TAMA’s matching table is to organize
(range) constraints into an indexing structure, so that matched
constraints can be efficiently retrieved for each event. The
counting algorithm [4], [28] is then used to obtain the matched
subscriptions. A straightforward method of indexing a range
constraint is to separate the content space intocellsand use the
IDs of the cells intersected with the constraint to represent it.
This method is calleddiscretization, as shown in Fig. 2. Amap
of cell IDs andsubIDs is then built. This operation results in
O(Wsub) cells and a maximum false positive ofWcell

W ′

sub

, where
Wsub, W ′

sub, andWcell are the widths of the input range, the
resultant ranges after discretization and the cell, respectively.
An obvious problem of this approach is that reducing false
positive requires a substantial increase of the storage memory.
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Fig. 2. A straightforward indexing method, which results inirreconcilable
conflict between the memory consumption and the false positive.

For example, in the fine-grained discretization in the bottom
of Fig. 2, 6 cell IDs are obtained, which is twice of that in
the coarse-grained case. Generally, to obtain a false positive
that is� times that of the original discretization,1

�
times the

original memory is needed. This makes it expensive to achieve
a low false positive rate using this approach.

In order to resolve this problem, we proposehierarchical
discretization. Fig. 3 illustrates the idea. First, the entire
content space of each attribute is separated multiple timeswith
different granularitiesorganized inlevels. Specifically, at the
i-th level, the attribute space is separated into2i cells, and
each cell at thei-th level will be separated into two cells at
the(i+1)-th level. In Fig. 3, a 5-level discretization is applied.

The algorithm is depicted in Algorithm 1, and an illustration
is given in Fig. 3. It first find the level at which at least one cell
is contained in the input range (lines 4−9), which is level 2 in
Fig. 3. This level is denoted bystart. The remaining portions
of the input range, represented by[l, left] and [rigℎt, r], are
then discretized at higher levels (lines 10−18), which is level
3 in Fig. 3. Here,left andrigℎt are the left and right ends of
the range that are produced thus far. At the maximum level,
level 4 in Fig. 3, additional ranges are included to conclude
the discretization with a false positive.

Since the resultant ranges contain parts of the content
space that are not in the original range, Algorithm 1 causes
false positives in event matching. We define theeffective
discretization levelto be(m−start+1), which is the number
of levels spanned from the starting level through the maximum
level. An important property of Algorithm 1 is that at most two
cells are produced at each level. This directly follows fromthe
discretization process shown in Fig. 3. Based on this property,
we obtain a theorem about the false positive rate (FPR):

Theorem 1: The FPR of hierarchical discretization is re-
duced at least by half by using one more level of discretization.

Proof: Since the maximum range width is at least the
width of the starting level,W start

cell , and the falsely included
range is at most twice the width of the cell at the maximum
level m: Wm

cell, the false positive is at most 2×Wm

cell

W start

cell
+2×Wm

cell

.
Assuming uniform separation of the content space at all
levels, the false positive is at most 1

2m−start−1+1 . When
(m − start − 1) is large, the FPR becomes 1

2m−start−1 .
Therefore, increasing one level in discretization will increment
m by 1, which will reduce the false positive by half. The
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Fig. 3. Discretization of a range on 5 levels with different granularities. The
heavily-shaded cells are obtained at each level; and the lightly-shaded ones
are the already covered cells of the last level.

theorem is proved. Note also that the effective discretization
level, which is(m− start+ 1), determines the false positive
of discretization, which is found to be 1

2m−start−1+1 .
We give the illustration of TAMA’s matching table in

Fig. 4. Using Algorithm 1, we can insert a subscription
into the approximate matching table. The difference from
the straightforward approach is that an additional layer, dis-
cretization level, is included in the table. TAMA uses an
attribute-wise indexing structure. All attributes are organized
into a linear table. For each attribute constraint, a set of
cell IDs are obtained after discretization. These IDs become
indexes of the 3-layer matching table{attribute name →
level number → cell ID → sub ID}. A 3-tuple of
{attribute name, level number, cell ID} is obtained for
each constraint. ThesubID of the subscription, along with
the tuple of ⟨attribute name, level number, cell ID⟩, are
inserted into the matching table. There is another table called
attr count table that stores the number of constraints for each
subscription, which is used in the matching algorithm to
determine if a subscription is matched.

1) Memory consumption:We assume that the effective
discretization level of all constraints isl. As explained above,
at most 2 cell IDs need to be stored at each level. Each cell ID
associates with one subscription ID. We use4-byte integers to
represent cell and subscription IDs, so each attribute constraint
needs at most(8 × l) bytes to store the resultant IDs. In
experiments, we put a maximum of 10 million of constraints
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Fig. 4. The structure of the matching table. The first two layers are linear
tables; the last layer is a hash map, which is fast for indexing sparse key-value
pairs.
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Algorithm 1 Range discretization

1: input: m := maximum level; [l, r] := input range;
2: output:map⟨int, set⟨int⟩⟩ ID;
3: start = left = rigℎt = 0;
4: for level := 0 : m do
5: if there is a set of cellsc contained by[l, r] then
6: ID[level].union(c);
7: start = level;
8: end if
9: end for

10: left = ID[start].min().left();
11: rigℎt = ID[start].max().rigℎt();
12: for level := start+ 1 : m− 1 do
13: if there is a set of cellsc contained by[l, left] and

[rigℎt, r] then
14: ID[level].union(c);
15: left = ID[level].min().left();
16: rigℎt = ID[level].max().rigℎt();
17: end if
18: end for
19: Find cellsc that contains[l, left] and [rigℎt, r]
20: ID[m].union(c)

in the table and usel = 10; the total memory assumption is
1.49G bytes in the worst case. This is acceptable considering
the current trend of hardware development. Additionally, the
actual consumption in real-world applications is likely tobe
smaller, since it is likely that no cell IDs are produced at
certain levels for a constraint, and the same cell IDs are
produced for multiple constraints.

2) Insertion and deletion of subscriptions:The insertion
of a subscription into this table is straightforward: discretize
each constraint and insert itssubID into the corresponding
entry; update theattr count table. The deletion follows a
similar process: If the subscription’ssubID is given, each
constraint is first discretized, and thesubID is removed from
all the corresponding table entries. Otherwise, a lookup is
performed at all levels to obtain a number of sets ofsubIDs.
The intersection of all sets gives thesubID of the subscriptions
that has the same discretization results. The raw subscription
is then checked to determine the exact subscription that needs
to be removed. In the case of multiple identical subscriptions
are obtained, TAMA only removes the one associated with
the interface from which the removed subscription is received.
This guarantees the correctness of the routing. After all these
are done,attr count table deletes the record of the removed
subscription as before.

B. Matching algorithm

When an event is fed into TAMA, its attribute assignments
are first discretized into cells. Suppose an attribute assignment
is in the form of [attribute = value], it is represented by
cells containing it at different levels, which uses the same
cell separations as the discretization of range constraints. For
example,temperature = 0.7 (normalized value) is 0 at the

Algorithm 2 Event matching
1: input: evente
2: output: matchedsubIDs ID

3: matcℎConsCount := {, }
4: min := match table.minLevel()
5: max := match table.maxLevel()
6: for all attr ∈ e.attributes() do
7: for level := min : max do
8: cellID = attr.discretize(level)
9: for all id ∈ matcℎIds do

10: ++matcℎConsCount[id]
11: end for
12: end for
13: end for
14: for all ⟨id, count⟩ ∈ matcℎConsCount do
15: if attr count table[id] == count then
16: ID.union(id)
17: end if
18: end for

0-th level and 1 at the1-st level in Fig. 3. Algorithm 2
is then executed to perform the matching. The cell IDs are
used to look up the matching table to obtain a set ofsubIDs,
which have constraints that are satisfied by the assignment.
Since cells are contained by subscriptions recorded in each
entry of the matching table and the assignment is contained
in cells, the assignment must also be contained by the range
representing the constraints. In other words, the event satisfies
the constraints of the returnedsubIDs defined on the attribute
name.

This process is performed on all attributes at all levels of
the match table (lines 6 − 13). The above lookup returns a
set of subIDs. The appearance count of eachsubID indicates
the number of satisfied constraints of the subscription. The
attr count table is then checked: A subscription is matched
by the event if its appearance count is equal to the associated
value in the table (lines 14 − 17). Since the discretization
enlarges the contained area of the original subscription, there
is no false negativein the matching. We formally state the
correctness of the algorithm in the following theorem:

Theorem 2: Algorithm 2 returns the IDs of the subscrip-
tions that are matched by the input event with a bounded false
positive.

Proof: We first prove that all subscriptions that are
matched by the input event are returned by Algorithm 2. An
equivalent argument is that the appearance count of the ID of
a matched subscription will be identical to the corresponding
value in theattr count table. To show this, we first note that
if a subscription has a constraint matched by the event, its
ID will be found. We prove this argument by contradiction.
Suppose the ID of the matched subscription is not returned,
the attribute assignment’s cells do not intersect with any one of
the constraints at any level. Therefore, this assignment isnot
inside the constraint, which is contradictory to the assumption.
The argument is thus proved.
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Since the subIDs of different combinations of
attribute name, level number andcell ID are returned, we
need to prove, that at different levels, the returnedsubIDs of
any attribute assignment of the input event are non-duplicated.
Assume without loss of generality that there are two different
levels (L0 < L1) at which the event’s cell IDsCL0

andCL1

return the samesubID i, then these two cells are produced
from subscriptioni’s discretization process. According to
the hierarchical separation,CL1

must be contained byCL0
.

However, the discretization process does not allow such a
situation, since if a cell is chosen at levelL0, all its contained
cells at higher levels will not be chosen. This makes the
assumption invalid, so the argument is proved. Combining
these two arguments, we prove that all matched subscriptions’
subIDs are returned by Algorithm 2.

The bounded false positive follows directly from the anal-
ysis in the proof of Theorem 1. Consider a subscription
comprising of NA attribute constraints, for each attribute
Ai ∈ {A0, A1, ..., ANA

}, its false positive rate is�i. Since the
subscription is a conjunction of constraints, the FPR of sub-
scription matching is1−

∏
i∈[0,NA] (1− �i) ≈

∑
i∈[0,NA] �i.

We usually choose a fixed� for all attributes, so it becomes
(NA × �), which is clearly bounded.

A theorem similar to Theorem 1 is given below, which
describes the trade-off between memory consumption and the
matching FPR:

Theorem 3: The matching FPR of Algorithm 2 is reduced
by at least half by increasing one level of discretization.

Proof: As stated in Theorem 1, the matching FPR for
each attribute reduces by half when increasing one level
of discretization. According to the analysis in the proof of
Theorem 2, the FPR of matching is

∑
i �i, which is the sum

of all FPRs of all attributes. If the FPR of all attributes can
be reduced by half, the overall matching FPR can be reduced
by half as well. The theorem is thus proved.

1) Handling equality constraints:The value of an equality
constraint, along with the ID of the subscription that contains
it, are stored into a hash map. Algorithm 2 needs to look up
this map and thematch table to find the correctsubIDs before
applying the counting algorithm before line 14. Note that there
is no false positive for the matching of equality constraints.

2) The false positive of interface matching:Since each
interface is associated with multiple filters, the probability of
an interface is falsely matched by an event is much smaller
if multiple subscriptions are matched. This can be verified as
follows: suppose an interfaceinf is associated with multiple
filters, of whichfilteri has a FPR offpri. If a set of filters
filtermatcℎed are matched by an event, the probability that
this interface is falsely matched is the probability that all filters
are falsely matched, which is described as follows:

FPR =
∏

i∈filtersmatcℎed

fpri (1)

Since the filters’ FPRs are generally very small, the interface
FPR can be greatly reduced, which results in desirable routing

performance. We proposedynamic matchingto exploit this
property in Section III-E.

3) Complexity: TAMA’s match algorithm has a appealing
complexity. It works in two phases:querying phaseandupdat-
ing phase. In the querying phase (lines 7− 14), all partially-
matched subscriptions are returned. The truly-matched sub-
scriptions are found in the updating phase (lines 15− 17). In
the querying phase, all attributes and discretization levels are
checked to obtain subscriptions’ IDs. Usinghash mapresults
in a constant time complexity in retrieval (assuming a perfect
hash function is available). The overall time complexity will
beO(NANL), whereNA is the number of the attributes of the
event andNL is the number of levels that have been checked
in match table.

In the updating phase, the algorithm updates the number
of matched constraints for all partially-matched subscriptions.
This operation has a time complexity linear to the number of
partially-matched subscriptions, which is at most the number
of matched constraintsO(Ncons). Therefore, the overall time
complexity of this matching algorithm isO(NANL+Ncons).
For algorithms based on the counting algorithm [4], [28], the
updating phase is inescapable. TAMA achieves a fast matching
speed due to its fast querying phase.

Algorithm 3 Optimal separation

1: input: m := maximum level; cells[0] = {[0, 1]};
2: output:cells := cell separations for level0 throughm;
3: for level := 1 : m do
4: for all cell ∈ cells[level− 1] do
5: median := median(cellbegin, cellend);
6: separatecell into:

{[cellbegin,median], [median, cellend]};
7: Insert these two cells intocells[level];
8: end for
9: end for

C. Optimal discretization under non-uniform distributions of
event attribute values

The above analysis assumes uniform distribution of events’
attribute values, so uniform separation is used at all levels of
the hierarchical discretization. It is obvious that this will work
poorly for skewed distributions of attribute values, whichare
normal for real-world application [4]. Therefore, non-uniform
separation is needed. Given a latent distribution of the value
of an attribute, which is described by a distribution function
D(x), we propose an optimal binary separation process in
Algorithm 3.

First, we need a helper functionmedian(x, y), which gives
the median of the distribution function on the interval of
[x, y], which is defined asmedian(x, y) = D−1(D(x)+D(y)

2 ).
Using this method, TAMA can guarantee Theorem 3 under
non-uniform event content distribution, as determined by the
distribution functionD(x). This can be proved as follows:
According to the definition ofmedian() function, the expected
number of events that fall into all cells at a given level is the
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Fig. 5. The matching table of the example in Section III-D.

same. Since a cell at thei-th level is separated into two cells of
equal probability at the(i+ 1)-th level, the expected number
of events that fall into these two cells are half of that at the
i-th level. Following the logic of the analysis in Section III-A,
we find that the expected number of falsely matched events
is reduced by half with one more level of discretization; this
also applies to the false positive. Therefore, this proves that
using the separations produced by Algorithm 3 guarantees
Theorem 3 for arbitrary attribute value distributions. Note that
the separation can be calculated on-the-fly without consuming
extra memory.

D. Example

A simple example of event matching is described here. We
first insert the following two subscriptions into the matching
table with maximum level of 4:

1) {temperature, 10, 70} ∧ {distance, 100, 600}
2) {temperature, 0, 5} ∧ {ℎeigℎt, 5, 100}

The first step to insert subscriptions is to normalize the
attribute constraints. To simplify the description, we setthe
value range of each attribute as follows:

∙ temperature : [0, 100]
∙ distance : [0, 1000]
∙ ℎeigℎt : [0, 100]

Using uniform discretization, the subscriptions become:
1) {temperature, 0.1, 0.7} ∧ {distance, 0.1, 0.6}
2) {temperature, 0, 0.05} ∧ {ℎeigℎt, 0.05, 1}

The resultant matching table is shown in Fig. 5. Given a
event with assignments{temperature = 40} ∧ {distance =
200} ∧ {ℎeigℎt = 70}, which becomes{temperature =
0.4}∧{distance = 0.2}∧{ℎeigℎt = 0.7} after normalization.
The discretized event is{temperature ∈ {0, 0, 1, 3, 6}} ∧
{distance ∈ {0, 0, 0, 1, 3}} ∧ {ℎeigℎt ∈ {0, 1, 2, 5, 11}},
which gives the IDs of the cells on level 0 through 4. The
retrieved subscription IDs are{1, 1, 2}. Since subscription 1
appears twice, which is equal to its constraint count, it is
matched by this event. Because subscription 2 appears once,
it is not matched. After manual checking, we find that this
result of Algorithm 2 is correct.

E. Optimizations

We present several techniques used to further improve the
performance of TAMA.

1) Matching table organization:The implementation of the
matching table aims to reduce memory access time, which
determines the lookup speed. The first two levels of the table
are implemented as linear tables. In order to convert the strings
of attribute names into integer indexes, we maintain a global

associative map of attribute names and indexes, which is called
attr idx table. Given an attributename, attr idx table[name]
returns the index of the attribute’s entries in thematch table.
When a subscription is first received at a broker, the attribute
names of its constraints are substituted by the corresponding
indexes to save processing time for operations on other brokers
(in a distributed pub/sub network) and later maintenance. The
same operation is performed for an event when it is first
received by a broker. The discretization levels (0 through
maximum level) can be directly used as indexes. The final
associative map of cell IDs andsubIDs are stored into a hash
map as shown in Fig. 4.

2) Compact encoding of discretization results:It is very
helpful to piggyback discretization results for subscriptions
and events in order to reduce processing time, especially
when using non-uniform separation. In the case where memory
or bandwidth is limited, this naive optimization may not
be acceptable. We introduce a compact representation of
discretization results of subscriptions based on the unique
property of the discretization process. We use a bit-vector
to encode an attribute constraint. The first 6 bits are used to
encode the index of the first level in discretization. Suppose
the number of the first 6 bits isB, there are at most two
cell IDs, and each can be encoded using at mostB bits. The
next trailing bit is used to indicate the number of cell IDs:
“0” for 1 and “1” for 2. We further use2(L − 1) bits to
encode the cell ID produced at two sides of the original range,
where (L − 1) is the total number of levels used. Finally, a
byte is appended before the vector to record the length of
the bit-vector. The overall memory consumption is at most:
2 + 2× 4 + 2×(L−1)

8 = 10 + L−1
4 .

The decoding works as follows: suppose that the IDs of the
left and right end cells at leveli are l and r, respectively; if
new cells are produced at leveli+1, their IDs are2l− 1 and
2(r + 1) at the left and right sides, respectively. This can be
seen from Fig. 3. The compact representation helps TAMA to
reduce pre-processing time for subscriptions and events.

For an event’s attribute assignments, the encoding is as
follows: the first byte encodes the first level, and the next 4
bytes record the cell ID of the first level. Then,L− 1 trailing
bits are used to encode the following cell IDs. Note that the
cell produced at thei-th level must be contained in the cell
of the (i− 1)-th level. We use “0” to indicate that the cell at
the current level is the first sub-cell of the cell at the previous
level, and “1” for the second sub-cell. A byte that records the
length of the bit-vector is then appended at the beginning. As
shown in Fig. 3, if the ID of an attribute assignment’s cell at
level i is n, the ID of the first sub-cell at level(i + 1) is 2n
and the second is(2n + 1). This rule is used to decode the
bit-vector to get the discretized event attribute assignments.

3) Dynamic matching:Eq. 1 gives a natural optimization
in distributed content-based networks. We call those brokers
directly connected with clientsedge brokersand those only
connected with other brokerscore brokers. Edge brokers
need to store a larger matching table with more levels to
preserve a low FPR and reduce the wrong events received
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by end clients. Core brokers, on the other hand, could store
a smaller table with fewer levels, as long as the event can
match multiple filters for each interface. Another type of
dynamic matching is to deliberately ignore a certain number
of higher levels of the matching table when at least one of the
subscriptions associated with the interface is matched. Since
false positives only occur at the maximum level, there will be
no false positives in this case. This corresponds to the shortcut
techniques used inSiena[8].

IV. PROTOTYPE IMPLEMENTATION

We implement TAMA as a forwarding component in
Siena [6], [8]. Our implementation includes 3,141 lines of
C++ [24] code which implements two interfaces (ifconfig() and
match()) required bySiena. We also implemented a prototype
independent ofSiena’s framework. It contains two programs
running at brokers and clients. The broker side program has
a receive(addr) function that is continuously listening on a
local network interface specified byaddr. The received UDP
packet contains the source address that will be associated
with the contained subscriptions in the packet as its outgoing
interface. The subscriptions contained in the packets are put
into the matching table usinginsert(sub, addr) function. addr
is the associated outgoing interface ofsub. On the client
side, asubscribe(sub, addr)function registers the subscription
sub to the broker residing at the network address indicated
by addr. An accompanyingunsubscribe(sub, addr)removes a
subscription from the broker located ataddr. Clients publish
events usingnotify(event, addr), whereaddr is the address of
its associated broker. All network addresses are standard IPv4
addresses and port numbers. The binary layout of subscription
and event storage are defined.

V. PERFORMANCE EVALUATION

This section presents the evaluation results. We summarize
the results of message matching time, false positives of event
and interface matching, processing efficiency and memory

parameter
name

meaning value range

attr widtℎ width of each range constraints [0.01− 0.1]
Nattr total number of attributes 1, 000

Ns
attr

number of range constraints
per subscription

[1− 10]

Ne
attr

number of attribute assign-
ments per event

[100− 1, 000]

Ncons
total number of primitive con-
straints [20, 000 − 2× 107]

Ninf
total number of interface per
broker [10− 2× 107]

Nsub
total number of subscriptions
in the matching table [1, 000 − 106]

N
inf
sub

number of associated subscrip-
tions per interface [1− 2× 105]

Nmsg
total number of messages sent
to TAMA [10, 000 − 108]

Fe
distribution function of the at-
tribute values of events

{uniform, pareto,
power law}

TABLE I
THE PARAMETERS USED IN EXPERIMENTS.

0 2M 4M 6M 8M 10M 12M 14M 16M 18M 20M
0.03125

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

 

 

A
ve

ra
ge

 m
at

ch
in

g 
tim

e 
(m

s)

Number of primitive constraints

 Siena
 TAMA

Fig. 6. Matching time per message in the degenerate case where the
all matched subscriptions need to be returned for any input event. Each
subscription has 10 range constraints with a width of 0.01. Each event has
100 attribute assignments.
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Fig. 7. Interface matching time per message. Each subscription has 10 range
constraints with a width of 0.01 and 0.5; 20,000 subscriptions, or 4,000,000
primitive constraints, are stored in the matching table.

consumption. All experiments are conducted on a Linux
workstation with 8 3GHz cores and 16GB memory. Parallelism
is not used. All attribute values are normalized to[0, 1]. The
parameters used are summarized in Table I.

A. Matching time

Fig. 6 presents the matching time per message in the
degenerate situation where each subscription is associated with
a unique interface. Uniform distribution is used. The results
of Pareto and power law distributions are similar, and are
omitted to save space. We letSiena perform 10 rounds of
preprocessing. Thex-axis represents the number of primitive
constraints stored in the matching table. Note that each range
constraint is counted as two primitive constraints. They-axis
represents the average matching time per-message in log-scale.
In this experiment, the IDs of all matched subscriptions of
every input event are returned.

As shown in the figure, TAMA outperformsSiena with a
large gap when the number of constraints exceeds 160k. A de-
tailed profiling reveals that the querying phase of Algorithm 2
becomes a major bottleneck when the number of constraints
is small, where TAMA only has a slightly smaller matching
time compared toSiena. This phase almost spends a constant
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Fig. 8. 3D plot of the FPR of subscription matching. 20,000 subscriptions are
stored in the matching table. The number of range constraints per subscription
varies from 1 to 10. The width of range constraints varies from 0.01 to 0.1.

time (theoretically constant if using perfect hashing) when a
large number of constraints are stored in the table. The slow
growth of the matching time is resulted from more partially
matched subscriptions. On the other hand,Siena scanning all
subscriptions (with shortcuts to avoid checking a fractionof
subscriptions) would result in a linearly growing time com-
plexity, which certainly would produce substantially degraded
results when the number of constraints continues to grow. In
the extreme case of 20-million primitive constraints, TAMA
sustains a per-message matching time of 3.23 milliseconds,
which is far superior toSiena.

When multiple filters are associated with each interface,
shortcuttingcan significantly reduces the matching time, as
indicated in [8]. A similar experiment is conducted here, and
the results are shown in Fig. 7. TAMA uses dynamic matching
of Section III-E to reduce the number of levels needing to be
matched. We note that shortcutting only works noticeably for
the case that constraint width is 0.5. This is because when
constraint width is small, and an input event can only match
a very small number of subscriptions, TAMA andSiena are
forced to examine all matched subscriptions, so the matching
time almost does not change. But, for wider constraints, more
subscriptions are matched by the event, which provides more
shortcutting to let both algorithms stop matching without
returning all matched subscriptions.

B. False positive

Fig. 8 plots the FPR of subscription matching versus the
number of attribute constraints per subscription and the width
of each constraint. The FPR is calculated as follows:

matcℎed sub count− truly matcℎed sub count

matcℎed sub count
(2)

We input 10,000 events to TAMA and calculate the overall
FPR using Eq. 2. The results are presented in Fig. 8. Thex-
axis represents the number of attributes per subscription;the
y-axis represents the width of each range constraint; and the
z-axis is the average matching FPR. 20,000 subscriptions are
stored in TAMA’s matching table. All subscriptions are dis-
cretized up to level 20. This means that wider range constraints
will have smaller FPRs since their effective discretization
levels are larger, which is confirmed in the figure. Also, with
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Fig. 9. 3D plot of the FPR of interface matching. The setting is the same
as the experiment of Fig 8.

the increasing number of attribute constraints per subscription,
the FPR increases. When the amount of constraints per sub-
scription exceeds a certain threshold, the probability that an
event can match any subscriptions becomes extremely small,
so that no subscriptions are matched at all. In this case, the
FPR is 0. In real applications, we seldom have more than 4 or
5 attributes. The FPRs in Fig. 8 are always below5×10−4 or
0.05%, and according to the analysis in Section III-B, the FPR
for subscriptions that have 10 constraints is 0.5% in the worst
case, which should be acceptable for real world applications.
Additionally, since TAMA’s approximate matching table pre-
serves the proximity in content space, the falsely delivered
events are considered very close to the required contents.
This property makes it more favorable than the approximate
matching approach used in [17], where an event may match
subscriptions that are completely irrelevant to its content.

We present the interface matching FPR in Fig. 9. It is mea-
sured in a similar way to Eq. 2. The difference is that we count
the number of selected interfaces instead of subscriptions. We
feed108 events to TAMA with 20,000 subscriptions, and 2,000
subscriptions are associated with each interface. The FPR is
much smaller than that of subscription matching, which is
below 2× 10−8 in all cases and is generally negligible.

C. Subscription processing time

We list the subscription insertion time for 3 methods:

∙ Direct insertion: Each subscription is discretized before
insertion;

∙ Fully cached: The discretization results are cached with
each subscription and no discretization is needed;

∙ Coding: An encoded bit-vector is piggybacked with each
subscription, and a decoding is needed before insertion.

Fig. 10 shows the simulation results. We only present
the results of using power law distribution in the optimal
discretization. The power law distribution has a scaling factor
of 1.0 and an exponent of2. The reason to omit the results
of using Pareto distribution is that it gives an almost identical
results as that of the power law distribution. Using uniform
distribution produces results that are close to those of thefully-
cached and direct-insertion, and using compact coding method
does not provide noticeable improvement over direct-insertion
since its computation is quite simple.

8



0 2M 4M 6M 8M 10M 12M 14M 16M 18M 20M
0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

1024

2048

 

 

In
se

rti
on

 ti
m

e 
(s

ec
on

d)

Number of primitive constraints

 TAMA (power law, coding)
 Siena
 TAMA (power law, fully cached)
 TAMA (power law, direct)
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As shown in Fig. 10, the labelscoding, fully cacℎed

anddirect correspond to the three methods given above. We
can see that the coding method achieves similar results to
the fully-cached method, which is the best. Both coding and
fully-cached reduce nearly half of the insertion time of direct-
insertion. Fig. 11 shows the time used to delete a subscription
from the matching table. Deletion is not provided inSiena,
so no results is given in the figure.

D. Memory consumption

We plot the memory consumption of TAMA in Fig. 12.
The raw storage of each range constraint is 16 bytes, which
corresponds to 2double floating-point numbers in our ma-
chine. TAMA’s memory consumption is measured by the
space needed to store all cell and subscription IDs in the
matching table. In our implementation, cell and subscription
IDs are 4-byte integers. As shown in the figure, the memory
consumption grows linearly with the number of constraints.
TAMA consumes 3-4 times memory of the raw storage. This
is less than the worst case analytic results in Section III-A.
Note that the effective discretization level numbers are 14and
17 for the widths of 0.01 and 0.1, respectively.
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Fig. 12. The memory consumption counted in the memory space needed to
store the cell IDs andsubIDs in the matching table.

VI. RELATED WORK

Content-based matching and forwarding are active research
topics [7], [10], [28]. Except for content dissemination, it
has extensive applications in web content caching [4], XML
document filtering [9] and online advertisement [12].

A. Content representation model

The canonical model uses Boolean expressions of conjunc-
tive normal forms (CNF) to express subscriptions. This model
is widely used in [2], [6], [8], [11], [29]. It has the advantages
of uniform interfaces and the standard programming model,
which makes it easy to implement. Besides, since it has
a well-defined structure, many optimizations can be applied
to achieve very fast event matching and forwarding speed.
However, the problem of exponentially-increasing memory
consumption of converting arbitrary Boolean expressions [22],
[28] becomes severe and hinders the event processing through-
put. The use of arbitrary Boolean expressions draws attention
in [3], [5], [12]. Their works demonstrate that evaluating
arbitrary Boolean expressions can be made efficient, which is
comparable to the canonical model, but has smaller memory
consumption. However, it is unlikely to sustain a similar
performance in large scale systems of tens of millions of
constraints, as we have done in this paper. Further, its excessive
processing overhead is not well addressed in a dynamic
environment.

B. Matching and routing algorithms

We mainly focus on the matching and routing using the
canonical model. It is proved in [19] that content matching
is as hard as partial matching [16].Siena fast forwarding
(SFF) extends the counting algorithm [4], [28] to the shortcut
matching process for the disjunction of multiple subscriptions
associated with a single network interface. The main problem
of SFF is that it requires complex operations to update the
matching table. And as indicated in this paper, its performance
degrades substantially as the scale of the system grows. An
extension to SFF is presented in [25], which aims to improve
the storage and management of subscriptions. MICS [14]
intends to transform multi-dimensional ranges, which are
used to express subscriptions into one-dimensional intervals.
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Although the matching speed is increased, it comes with
a prohibitive memory consumption. The authors propose to
use interval merging to mitigate this problem, which will
result in additional FPRs. The implementation issue of content
matching is studied in [11], where several optimizations are
proposed to accelerate the execution speed of content matching
algorithms. On the contrary, TAMA achieves a nice trade-off
between memory and matching speed, as well as lower false
positive rates.

A Bloom-filter-based matching scheme is presented in [17].
Bloom filters [13] are used to store matched primitive con-
straints. Encoded subscriptions and intermediate matching re-
sults are stored in a novel data structure. An indexing structure
of Boolean expressions is presented in [27] in order to reduce
the memory consumption. A routing optimization based on
recording intermediate matching results is proposed in [18].
It requires an identical matching table on all brokers in the
network. Subscription covering [23] and subsumption [15],
[21] reduces routing table size by only storing the most general
subscriptions. Another similar approach is called subscription
summarization [26], which proposes to use imperfect merging
of subscriptions to reduce routing table size. All these tech-
niques are unable to tune the false positive rate.

VII. C ONCLUSION

In this paper, we present TAMA, an approximate matching
and forwarding engine for large-scale CBNs. TAMA uses
an hierarchical indexing structure to approximate the original
subscriptions. This indexing structure provides fast approxi-
mate event matching, which causes false positives. Its novelty
is that it can control the FPR of matching using a concept
called hierarchical discretization, which offers a nice trade-
off between the memory consumption and the FPR. Our
analysis proves that TAMA can be carefully tuned to meet
extensive performance requirements, i.e., by adjusting the
maximum discretization level and using optimal discretization
for specific attribute value distributions. Our experimentresults
show that TAMA outperforms a state-of-the-art technique with
a substantial margin, and that the FPR is generally acceptable
in all practical cases. We also present the implementation of
TAMA in Siena, and a set of APIs for a prototype.
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